ALGEBRA II WORKSHEET: GRAPHING IN VERTEX FORM

For each function, complete the following prompts and graph on the axes provided. Show any work on a separate sheet of paper.

1. $y = (x - 5)^2 - 1$

Axis of Symmetry_____

x-intercept(s)_____

y-intercept_____

Concave Up or Down?_____

One Other Point on the Graph_____

Domain_____

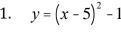
Range____

2. $y = -2(x+3)^2$

Vertex

Axis of Symmetry_____

x-intercept(s)_____

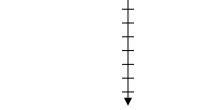

y-intercept_____

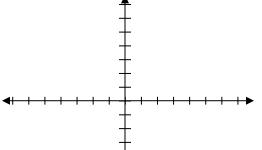
Concave Up or Down?_____

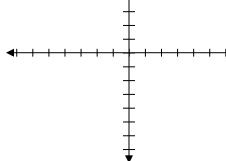
One Other Point on the Graph_____

Domain_____

Range____







3. $y = -(x-2)^2 - 3$

Vertex_____

Axis of Symmetry_____

x-intercept(s)_____

y-intercept_____

Concave Up or Down?_____

One Other Point on the Graph_____

Domain_____

Range_____

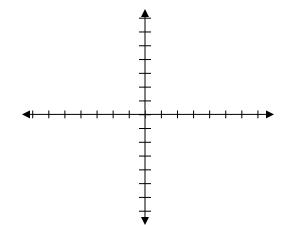
4. $y = 3(x+4)^2 - 6$

Vertex_____

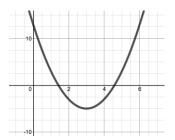
Axis of Symmetry_____

x-intercept(s)_____

y-intercept_____

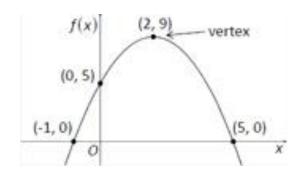

Concave Up or Down?_____

One Other Point on the Graph_____


Domain_____

Range_____

5. Find three points on the graph of $y = (x - 1)^2 + 5$.


- 6. The equation that represents the given graph is in the form $y = a(x h)^2 + k$.
 - a. Is the value of "a" positive or negative? Explain.

- b. What are the values of "h" and "k"?
- 7. A portion of the graph of a quadratic function f(x) is shown in the xy plane. Selected values of a linear function g(x) are shown in the table.

IN THE "COMPARISON" BOXES BELOW, WRITE THE APPROPRIATE SYMBOL: >, <, OR =.

First Quantity	Comparison	Second Quantity
The y-coordinate of the y-intercept $f(x)$	•	The y-coordinate of the y-intercept $g(x)$
f(3)	T	g(3)
Maximum value of $f(x)$ on the interval $-5 \le x \le 5$	▼	Maximum value of $g(x)$ on the interval $-5 \le x \le 5$
$\frac{f(5)-f(2)}{5-2}$	_	$\frac{g\left(5\right)-g\left(2\right)}{5-2}$

x	g(x)
-4	7
-1	1
2	-5
5	-11

8-10. Given the functions below, answer each question.

$$f(x) = -x^2 + 4$$

$$g(x) = 2x^3 - 5$$

$$f(x) = -x^2 + 4$$
 $g(x) = 2x^3 - 5$ $h(x) = 2\sqrt{3x + 5}$

8. Find
$$f(3x-2)$$
.

9. Find
$$g(3) \cdot (f \cdot g)(x)$$

10. Find the value(s) of x such that h(x) = 12.

- 8. The graph in #6 can also be represented in the form $y = ax^2 + bx + c$.
 - a. Is the value of "a" positive or negative? Explain.
 - b. Is the value of "c" positive or negative? Explain.
 - c. Is the value of b^2 4ac positive, zero, or negative? Explain.
- 9. The New York Transit Authority is considering changing their subway fares. A study determined that the daily revenue earned from people riding the subway can be represented by $R = 370x 5x^2 + 19,800$, where x represents the fare in dollars and R represents the daily revenue. What fare should the city charge in order to earn the greatest revenue?