ALGEBRA II PRACTICE: COMPLEX NUMBERS
1-6. Simplify each expression.

1. $\sqrt{-12} \cdot \sqrt{-5} \cdot \sqrt{-10}$
2. i^{-235}
3. $\frac{2}{3}(6-5 i)-2(3+4 i)+\frac{1}{2}\left(\frac{4}{3}-i\right)$
4. $(3-5 i)^{3}$
5. $\frac{7+2 i}{3-4 i}$
6. $(3-i)(2+3 i)^{-2}$
7. Simplify. (Hint: use factoring) $(6-5 i)(4+5 i)^{3}+(-6+5 i)(4+5 i)^{3}$
8. Find the absolute value of $8+5 i$.
9. Find the reciprocal of $8+5 i$. Write your answer in standard form. Check that your answer is correct by multiplying it by the original number. Before doing the multiplication, answer: what should your product be?

10a. Find $i+i^{2}+i^{3}+i^{4}$.
b. Find $i^{27}+i^{28}+i^{29}+i^{30}$.
c. Do you think you will get the same answer if you add any four consecutive powers of i? Explain in complete sentences.
11. Find the values of a and b that make the equation true: $(a+3 b)+11 i=-1+(3 a+2 b) i$
12. Find the average of the complex numbers $4-7 i$ and $-2+5 i$. Plot the two numbers and the average on the axes shown.

13. Solve the equation $x(x-4)=-2 x^{2}-15$.
14. Find three complex numbers whose absolute value is 5 . Only one of them may be a real or pure imaginary number.
15. If $(1+i)^{13}=a+b i$, find the values of a and b .
16. Complete the table.

	Real Part	Imaginary Part	Conjugate	Opposite
$2-3 \mathrm{i}$				
5 i				
-10				

