ALGEBRA II NOTES
 FUNCTION ANALYSIS

Domain-The set of all allowable values of the independent variable.
Range-The set of all values of the dependent variable.
Zeroes of a Relation-The value(s) of independent variable (x) that make the dependent variable (y) equal to zero. (To find them, let $y=0$ and solve for x.)
\mathbf{x}-intercept-The point(s) at which a graph intersects the x -axis. (To find them, let $\mathrm{y}=0$ and solve for x.)
\mathbf{y}-intercept-The point(s) at which a graph intersects the y -axis. (To find them, let $x=0$ and solve for y.)

One-to-One Function-A FUNction in which all values of the range have exactly one value of the domain paired with it. (Horizontal Line Test)

Onto Function-A FUNction in which all possible values of the range are in the range. (For us, that means that the range is all real numbers.)

Interval of Increase-A FUNction is increasing on an interval if, for all values x_{1} and x_{2} on the interval, $x_{1}<x_{2}$ implies that $f\left(x_{1}\right)<f\left(x_{2}\right)$. (The graph is going up from left to right.)

Interval of Decrease- A FUNction is decreasing on an interval if, for all values x_{1} and x_{2} on the interval, $x_{1}<x_{2}$ implies that $f\left(x_{1}\right)>f\left(x_{2}\right)$. (The graph is going down from left to right.)

Constant Interval-A FUNction is constant on an interval if $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all values x_{1} and x_{2} on the interval. (The graph is horizontal.)

Absolute Minimum- $f(c)$ is the absolute minimum value of a FUNction if $f(c) \quad f(x)$ for all values of x . (It is the least value of y over the entire function.)

> Absolute Maximum- $f(c)$ is the absolute maximum value of a FUNction if $f(c) f(x)$ for all values of x. (It is the greatest value of y over the entire function.)

Relative Maximum- $f(c)$ is a relative maximum on an interval if $f(c) \quad f(x)$ for values of \mathbf{x} close to c. (These are the y-values of the "peaks" in a graph.)

Relative Minimum- $f(c)$ is a relative minimum on an interval if $f(c) \quad f(x)$ for values of x close to c . (These are the y-values of the "valleys" in a graph.)

A FUNction is considered positive on an interval if $f(x)>0$. (The graph is above the x-axis.)
A FUNction is considered negative on an interval if $f(x)<0$. (The graph is below the x-axis.)

