Algebra II
Common Midterm Review

Part I.

• I can use clear definitions, including correct mathematical language and notation.

Name_____ 2019-2020

- I can express inequalities in interval notation.
- I can determine if a relation is a function or not.
- I can determine if a function is discrete or continuous.

Express each inequality in interval notation.

1. $x < -4 \text{ or } x \ge 3$ 2. $-9 \le d < 0 \text{ or } 7 > d \ge 3$

Determine if each relation is a function. If it is not, please explain why. If it is a function,

- state the domain and range.
- state whether the function is discrete, continuous, or neither.

3.

Х	у
3	10
-5	10
4	9
7	5
12	4
0	-6
2.8	-12

5.

Part II.

- I can evaluate functions.
- I can perform operations on functions (addition, subtraction, multiplication, division).
- I can find values of x that yield a given value of y.
- I can find zeroes and intercepts of a function given an equation.

Given the functions below, evaluate each expression.

- f(x) = -7x + 3 $g(x) = -x^2 + 4x 2$ Graph of h(x)
- 1. Find g(-4). 2. Find $(f \cdot g)(x)$.
- 3. Find g(3x-2). 4. Find $f(-5)-3[h(2)]^2$.
- 5. Find (fg-h)(-1). 6. Find $k(1) \cdot [f(x)]^{k(-4)} - g(3x)$.
- 7. Find all values of g(x) such that g(x) = -14.
- 8. Find all zeroes of g(x).
- 9. Find all values of f(x) such that $f(x) = \frac{2}{3}$.
- 10. Find the x-and y-intercepts for g(x).
- 11. TRUE OR FALSE: $\sqrt{25} = \pm 5$

Part III.

- I can evaluate piecewise functions.
- I can graph piecewise functions.
- I can write an equation of a piecewise function.

Given the function $p(x) = \begin{cases} 2 & \text{when } x < -3 \\ x^2 - 2x + 4 & \text{when } -3 \le x < 2, \text{ answer each question.} \\ -5x + 4 & \text{when } x > 2 \end{cases}$

- 1. Find p(-5). 2. Find p(2).
- 3. Find p(-1). 4. Find $p(\frac{5}{4})$.
- 5. Find p(6). 6. Find all zeroes of p(x).
- 7. Sketch the graph of p(x).
- 8. Find the equation of the function whose graph is shown.

Part IV.

- I can interpret graphs (domain, range, intervals of increase, decrease, constancy, zeroes, intercepts, relative and absolute extrema, intervals on which a function assumes particular values).
- I can graph a function using transformations of graphs of functions, including reflections and translations.
- I can find domain and range of a transformation of a function.
- I can sketch a graph given various conditions.

1-2. Complete the table for the functions whose graphs are shown.

3-5. Use knowledge of parent functions to graph each function.

- 3. y = -|x-4| + 3 4. $y = 2^{-x} 1$
- 5. $y = (-3 x)^3 + 2$
- 6-7. Given the graph of g(x), graph each transformation.
- $6. \quad y = -g(x+3)-2$
- 7. y = g(2-x)+1

- 8. Sketch a graph of a function satisfying the given conditions.
 - Range: $y \in (-\infty, 7]$
 - Zeros: x = -4, -1, 3
 - y-intercept: (0, 5)
 - Relative maximum: f(x) = 5
 - Relative minimum : f(x) = -4
 - f(5) is undefined
 - f(-2) = -1
- 9. TRUE OR FALSE: If a function f is <u>decreasing</u> on an interval (a, b), then f(a) < f(b).

Part V.

• I can factor polynomials using common factors, regrouping, and special products.

Factor each polynomial completely.

1.	$2x^3 + x^2 - 18x - 9$	2.	$-12x^2 - x + 6$
3.	$16x^4 + 54x$	4.	$x^2 - 13x - 48$
5.	$2x^2 + 17x + 21$	6.	$9p^2r + 73pr + 70r$
7.	(3x+1)(x-3) + (x-1)(3-x)	8.	8 <i>mc</i> - 24 <i>mk</i> + 5 <i>nc</i> - 15 <i>nk</i>
9.	$(2x+3)^2-49$	10.	$50a^2 + 288$

Part VI.

- I can solve quadratic equations using three methods (extracting roots, factoring, Quadratic Formula) with both real and non-real solutions.
- I can find discriminants and apply them to determine the number and nature of solutions to a quadratic equation.
- I can solve systems of quadratic equations.
- I can solve quadratic inequalities.
- I can solve applications of quadratics.

Solve each equation by extracting roots.

1.
$$3(x+3)^2 - 10 = -7$$
 2. $(d-3)^2 + 7 = 2$

Solve each equation using the Quadratic Formula.

3. 2x(x-4)+12=15 4. $9c^2-30c=-25$

Solve each equation using the Zero Product Property.

- 5. $x^2 = 9x$ 6. $7a^2 12 = -25a$
- 7. Solve the system of equations. $y = 2x^{2} + 3x$ $y = x^{2} + 8x - 4$

Solve each quadratic inequality. Write your final answers in interval notation.

- 8. $-3(x+2)^2 \le -12$ 9. $x^2 + 4x 8 > 0$
- 10. Use the fact that $2(2x-3)^3 + 5 = 59$ to solve $2(2x-3)^3 + 5 = 20x 1$.

11. Fill in the table below.

Equation	Discriminant	Number and Nature	What are the SOLUTIONS	What are the x-intercepts
		of Solutions	of the equation?	of the graph?
$x^2 - 2x - 15 = 0$			-	
$x^2 - 2x + 5 = 0$				
$-5x^2 = -75$				
$9x^2 - 30x + 25 = 0$				

- 12. The function $h(t) = -16t^2 36t + 21$ represents the height (in feet) of a rocket t seconds after being fired. What is the initial height of the rocket?
- 13. Peter throws a ball upward. The height of the ball, in feet, above the ground can be approximated by the function $h = -5t^2 + 160t$, where *t* represents the amount of time, in seconds, since the ball has been released. In how many seconds wilt h ball hit the ground?
- 14. The owner of a company that produces handcrafted music stands hires a consultant to help set the selling price for the product. The consultant analyzes the production costs and the consumer demand for the stands and arrives at a function for the profit, $P(x) = -0.3x^2 + 75x 2000$, where *x* represents the selling price of the stands.
 - a. At what price should the stands be sold to earn the maximum profit that the company can make?
 - b. According to the function given, what is the maximum profit that the company can make?
 - c. What are the break-even points (the selling prices such that the profit is 0)? Give your answer to the nearest cent.
 - d. For which values of x does the company make a profit?
 - e. For which values of *x* does the company suffer a loss?

Part VII.

- I can use the equation of a quadratic function in any form to find domain, range, concavity, points on a graph, zeroes, roots, x-intercept(s), y-intercept, vertex, and axis of symmetry.
- I can graph quadratic functions and inequalities.
- I can convert between forms of quadratic equations.
- I can find equations and inequalities of quadratics from a corresponding graph.
- 1. Convert the equation to vertex form. $y = 2x^2 5x + 3$
- 2. Convert the equation to standard form. $y = -\frac{1}{2}(x+4)(x-5)$
- 3. Convert the equation to intercept form. $y = 3(x-4)^2 27$

Complete each prompt and graph the functions.

	4.	5.	6.
	$y = -2\left(x-4\right)^2 - 16$	$y = -\frac{2}{3}(x+4)(x-2)$	$y = x^2 + 3x + 4$
Concavity			
Vertex			
Axis of Symmetry			
Domain			
Range			
Zeroes			
x-intercept(s)			
y-intercept			
Two Other Points			

7. Use your work from Question #6 to graph $y > -x^2 - 3x - 4$.

Find the equation or inequality of the function whose graph is shown.

- 10. Find an equation of a quadratic function such that the graph has a vertex at (-3, 2) and contains the point (0, 4).
- 11. TRUE OR FALSE: The graph of the function $y = 2(x-3)^2 4$ has an absolute minimum.

Part VIII.

- I can find square roots of negative numbers.
- I can add, subtract, multiply, and divide imaginary numbers.
- I can evaluate powers of i.

Simplify each expression completely.

 1. $\sqrt{-96}$ 2. $\sqrt{-12} \cdot \sqrt{-6}$

 3. $4\sqrt{-72} - \sqrt{-50}$ 4. $\frac{7i}{2i^2}$

 5. i^{295} 6. $\sqrt{-5} \cdot \sqrt{-4} + 6\sqrt{-45}$

 7. i^{-13} 8. $\frac{-3}{i}$

Part IX.

- I can find opposites and conjugates of complex numbers.
- I can add, subtract, multiply, and divide complex numbers.
- I can find the modulus (absolute value) of complex numbers.
- I can solve equations equating complex numbers.

Simplify each expression completely.

- 1. (7+5i)-(3-4i)2. (1+5i)(7-3i)3. i(5-3i)-(-4+5i)4. (5-3i)(-4+5i)5. $\frac{5-2i}{10}$ 6. $(-1-3i)^3$ 7. $\frac{4+i}{3i}$ 8. $\frac{3-2i}{5-3i}$
- 9. Find and simplify the reciprocal of -4 + 5i.
- 10. Find the absolute value of -4 + 5i.

Find the opposite and conjugate for complex number.

- 11. 12 5i 12. -5i 13. 35
- 14. Find the values of a and b that make the equation true.

(3a-2b)+(a+5b)i=14-i